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Preview of results

2

New justification and more general procedure that leads to Shapley value 

Under the Shapley procedure, player joining coalition keeps entire marginal contribution 

 Under our procedure, gains are divided up  

 Result is still the Shapley value for all  

 Surprising since payoffs must depend only on marginal contributions for Shapley value 

(α,1 − α)

α



Preview of results
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New non-cooperative game that mimics our procedure (and leads to Shapley value) 

 Builds on Hart and Mas-Colell (1996)                
      But can get Shapley value without having person making offer be one subject to elimination 

      Leads to a different way of thinking about weights in a Shapley value         
      Endogenous weights as opposed to fixed weights 

Results can be extended to NTU games 



Standard Procedure

4

Players join existing coalitions in random order 

Player joining gets full marginal contribution 

Shapley value is expected value of marginal contribution over all 
possible orderings 

 𝜙𝑖(𝑣) =
1
𝑛! ∑

𝑅

[𝑣(𝑃𝑅
𝑖 ∪ {𝑖}) −   𝑣(𝑃𝑅

𝑖 )]



Why would players in a real-world bargaining 
game ever agree to a Shapley value outcome?
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Horace W. Brock (1992)



New Procedure
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Players join existing coalitions in random order 

Player joining gets  and the others get  of the marginal contribution 

More realistic for person joining the coalition not to have all the bargaining power 

If  then identical to Shapley procedure 

If  must decide how the other players split up the  

Claims are based on marginal contributions

𝛼 1 − 𝛼

𝛼 = 1

𝛼 < 1 1 − α



Why We Care about Procedures
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Not a set of axioms. Not a non-cooperative game. 

In-between a cooperative game with axioms and a non-cooperative game rules. 

A guide for the players’ actions. 

May be persuasive tool to get participants to agree division of value. 

Helps us understand the interplay between the axioms. 

We don’t stop at procedure. Provide non-cooperative game as well.



How do we split up the  ?1 − α
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Split  share evenly doesn’t work well 1 − α

9

V(A) = V(B) = V(C) = 0. V(AB) = V(AC) = 0.  V(BC) = 1, V(ABC) = 1. 

A is a dummy player. Outcome should be B and C each get 0.5. 

A joins {BC}:      A gets an  share of 0  
B joins {AC}:      A gets 1/2 ( )  
C joins {AB}:      A gets 1/2 ( ) 

On average, A gets 1/3 [0 + 1/2 ( ) + 1/2 ( )] = ( )/3. 

Same as what B and C get from their  shares. Payoffs don’t depend on 
marginal contributions. Also, violates dummy player axiom. 

Shares should depend on marginal contributions.

α
1 − α
1 − α

1 − α 1 − α 1 − α

1 − α
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The Airport Game. Littlechild and Owen (1973) 



Why share only up to your marginal contribution 
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Cost(A)=1; Cost (B)=2; Cost(C)=3.   Cost (AB)=2, Cost (AC)=3, Cost(BC)=3       Cost(ABC)=3              

                  (the marginal contributions to ABC) 

A joins {BC}    A saves , B and C equally split the  

mA = 1, mB = 2, mC = 2

α (1 − α)



Why share only up to your marginal contribution 
 

12

Cost(A)=1; Cost (B)=2; Cost(C)=3.   Cost (AB)=2, Cost (AC)=3, Cost(BC)=3       Cost(ABC)=3              

 

A joins {BC}    A saves , B and C equally split the  

B joins {AC}        B saves , A and C equally split the  associated with first leg 

                                   C gets all  savings on 2nd 

                                 A didn’t pay anything for second leg.  

                                 Shouldn’t share in the savings. 

C joins {AB}   Similar to B joins {AC}

mA = 1, mB = 2, mC = 2

α (1 − α)

α2 (1 − α)
(1 − α)



Motivating example
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V(A) = V(B) = V(C) = 0

V(AB) = 20; V(AC) = 18; V(BC) = 12

V(ABC) = 24

Henceforth, we will ignore V(A) = V(B) = V(C) = 0 

Note that core is empty in this example



Motivating example: A joins B or B joins A
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 implies A and B each have marginal contribution of 20  

With two players, no issue how to split up the  since there is only one person  

Result doesn’t depend on . For any , they split the value created.  

Across AB and BA, expected payoffs are 

When A joins B    A gets  

When B joins A   A gets  

On average,     A gets ½ [  + ] = 10

V(AB) = 20

1 − 𝛼

𝛼 𝛼

𝛼20

(1 − 𝛼)20

𝛼20 (1 − 𝛼)20



Motivating example: C joins {AB}
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C gets  and {AB} each get  

A and B split the  equally since each has a claim on the full amount

α4 10 + 1
2 (1 − α)4

(1 − α)4

.      

Marginal contributions:  

V(AB) = 20; V(AC) = 18; V(BC) = 12 V(ABC) = 24

mA = 12, mB = 6, mC = 4



Motivating example: B joins {AC}
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.      

Marginal contributions:  

V(AB) = 20; V(AC) = 18; V(BC) = 12 V(ABC) = 24

mA = 12, mB = 6, mC = 4

B gets  and {AC} each get  

A and C split   and A gets remaining  

C’s claim is limited to 4

α6 9 but they do not split the (1 − 𝛼)6 equally

(1 − 𝛼)4 equally (1 − 𝛼)2 all to itself



Motivating example: A joins {BC}
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A gets  and {BC} each get  

B and C split   and B gets the remaining  

That leaves  unclaimed, so it goes back to A!

𝛼12 6 but they do not split the (1 − 𝛼)12 equally

(1 − 𝛼)4 equally (1 − 𝛼)2 all to itself

(1 − 𝛼)6

.      

Marginal contributions:  

V(AB) = 20; V(AC) = 18; V(BC) = 12 V(ABC) = 24

mA = 12, mB = 6, mC = 4



Looks messy. Everything depends on α
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What does C get? 

C joins {AB}     

B joins {AC}    

A joins {BC}    

On average    

Gets full  when on the outside and half its  twice when on the inside  

Payoff is independent of . Hence same as . Hence Shapley value! 

α4

9 +
1
2

(1 − 𝛼)4

6 +
1
2

(1 − 𝛼)4

1
3 [15  + 𝛼4 + (1 − 𝛼)4] =

19
3

α4 (1 − α)4

α α = 1
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What does B get? 

C joins {AB}     

B joins {AC}    

A joins {BC}    

On average        

10 + 1
2 (1 − α)4

α6

6 + 1
2 (1 − α)4 + (1 − α)2

1
3

[16 + α6 + (1 − α)6] = 22/3

Gets full  when on the outside and half its  twice when on the inside similar to C  
plus extra  when paired with C for total of .

α6 (1 − α)4
(1 − α)2 (1 − α)6
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What does A get? 

C joins {AB}     

B joins {AC}    

A joins {BC}    

On average   

10 +
1
2

(1 − 𝛼)4

9 +
1
2

(1 − 𝛼)4 + (1 − 𝛼)2

𝛼12 + (1 − 𝛼)6

1
3 [19  + 𝛼12 + (1 − 𝛼)12] = 31/3

Gets full 12 when on the outside and half its  twice when on the inside similar to C plus 
extra  when paired with C for total of  plus extra  unclaimed by {BC}.

α (1 − α)4
(1 − α)2 (1 − α)6 (1 − α)6



We got the Shapley value for all ! α

22



Define  procedure 

Players join in random order 

What happens when  joins a group that becomes  (with  included)? 

Define marginal contributions : For , . 

Relabel players according to their marginal contribution:  

α

i S i

S j ∈ S mj(S) = v(S) − v(S \ j) ≥ 0

m1(S) ≤ m2(S) ≤ . . . ≤ m|S|(S)



Define  procedure: 

Players join in random order 

What happens when  joins a group that becomes  (with  included)? 

Define marginal contributions : For , . 

Relabel players according to their marginal contribution:  

When the player joining is , the player gets  

                                          , the player gets   

α

i S i

S j ∈ S mj(S) = v(S) − v(S \ j) ≥ 0

m1(S) ≤ m2(S) ≤ . . . ≤ m|S|(S)

i < |S | αmi

i = |S | αm|S| + (1 − α)(m|S| − m|S|−1|)



Define  procedure: 

Players join in random order 

What happens when  joins a group that becomes  (with  included)? 

Define marginal contributions : For , . 

Relabel players according to their marginal contribution:  

When the player joining is , the player gets  

                                          , the player gets   

Each other player  in  gets                              where  

α

i S i

S j ∈ S mj(S) = v(S) − v(S \ j) ≥ 0

m1(S) ≤ m2(S) ≤ . . . ≤ m|S|(S)

i < |S | αmi

i = |S | αm|S| + (1 − α)(m|S| − m|S|−1|)

j S (1 − α)
Min(i,j)

∑
k=1

mk − mk−1

|S | − k
m0 = 0



Innovation: Instead of dividing  equally 
among all  players, we divided it equally 
segment-by-segment among those who have a 
claim. 

(1 − α)mi
|S | − 1



Theorem: Under the  procedure, average 
payoff to each player is its Shapley value 

α



Proof:  procedure  = 1α i

What is average gain to player 1 in stage where  and set grows from  to ? 

Two potential gains: (i) Go from  to  and (ii) Go from  to S across all . 

Player 1 gets                        recall  

                       

Payoff is independent of . Case with  is Shapley procedure. Hence Shapley value 

What player 1 loses when joining is exactly made up from being inside

i ∈ S |S | − 1 |S |

S \ 1 S S \ j j ≠ 1

1
|S |

[αm1(S) + ∑
j∈S \ 1

(1 − α)
min(1,j)

∑
k=1

mk − mk−1

|S | − k
] m0 = 0

=
1

|S |
[αm1 + ( |S | − 1)(1 − α)

m1

|S | − 1
] =

m1(S)
|S |

α α = 1



Proof:  procedure  = 2α i

What is average gain to player 2 in stage where  and set grows from  to ? 

Two potential gains: (i) Go from  to  and (ii) Go from  to S across all . 

Player 2 gets  

                   

                      is again independent of .    Case with  is Shapley procedure.

i ∈ S |S | − 1 |S |

S \ 2 S S \ j j ≠ 2

1
|S |

[αm2(S) + ∑
j∈S \ 2

(1 − α)
min(2,j)

∑
k=1

mk − mk−1

|S | − k
]

=
1

|S |
[αm2 + (1 − α)[( |S | − 1)

m1

|S | − 1
+ ( |S | − 2)

m2 − m1

|S | − 2
]]

=
m2(S)
|S |

α α = 1



Proof:  procedure  = |S|α i

What is average gain to player |S| in stage where  and set grows from  to ? 

Two potential gains: (I) Go from  to  and (ii) Go from  to S across all . 

Player |S| gets  

    

       is again independent of .    Case with  is Shapley procedure.

i ∈ S |S | − 1 |S |

S \ |S | S S \ j j ≠ |S |

1
|S |

[αm|S| + (1 − α)(m|S| − m|S|−1) + ∑
j∈S, j<|S|

(1 − α)
min(|S|,j)

∑
k=1

mk − mk−1

|S | − k
]

=
1

|S |
[αm|S| + (1 − α)(m|S| − m|S|−1) + (1 − α)[( |S | − 1)

m1

|S | − 1
+ … + 1

m|S|−1 − m|S|−2

1
]

=
m|S|(S)

|S |
α α = 1



To what extent is  procedure unique? 

What happens when  joins a group that becomes  (with  included)? 

As before, order the  players  

When the player joining is , the player gets  

                                          , the player gets   

How to divide up the remaining ?        Or  for ?  

Consider more general weights  

Other players  get                                 (stop at  since there is only  to distribute) 

In our procedure,  for  and  for  

Our procedure uniquely leads to Shapley value subject to weights satisfying bargaining intuition

α

i S i

|S |

i < |S | αmi

i = |S | αm|S| + (1 − α)(m|S| − m|S|−1|)

(1 − α)mi (1 − α)m|S|−1 i = |S |

wj,k|i(S) ≥ 0

j ≠ i (1 − α)
i

∑
k=1

wj,k|i(mk − mk−1) i mi

wj,k|i(S) = 1/( |S | − k) k ≤ j 0 k > j



To what extent is  procedure unique? 

Still true that  for .  

Consider average gain to player  where  and set grows from  to . 

Two potential gains: (i) go from  to , and (ii) go from  to  across all . 

For , gain to player  is    to get Shapley value 

                                                                       

Take . Only term with  comes from . 

Term  is only weight player  has on . Therefore must be 0.

α

wi,k|j(S) = 0 k > i

i i ∈ S |S | − 1 |S |

S \ i S S \ j S j ≠ i

i < |S | i αmi + ∑
j∈S \ i

(1 − α)
j

∑
k=1

wi,k|j(mk − mk−1) = mi

∑
j∈S \ i

j

∑
k=1

wi,k|j(mk − mk−1) = mi

k = |S | k = |S | j = |S |

wi,|S|||S|(m|S| − m|S|−1) i m|S|



To what extent is  procedure unique? 

                                                                      

Take . Only terms with  come from and  

The terms  and  are only weights on   

No negative weights. Therefore both must be 0 unless . 

So yes:  for  

                                                                   

α

∑
j∈S \ i

j

∑
k=1

wi,k|j(mk − mk−1) = mi

k = |S | − 1 k = |S | − 1 j = |S | j = |S | − 1

wi,|S|−1||S|(m|S|−1 − m|S|−2) wi,|S|−1||S|−1(m|S|−1 − m|S|−2) m|S|−1

i ≥ |S | − 1

wi,k|j(S) = 0 i < k

∑
j∈S \ i

Min(i,j)

∑
k=1

wi,k|j(mk − mk−1) = mi



To what extent is  procedure unique? 

                                                                      

Let’s look at positive weights. Take . 

If  then only one term with : comes from . 

 which implies . Unique. 

Also implies  to cancel out the . Not unique. 

More generally,  for  

and                       for 

α

∑
j∈S \ i

Min(i,j)

∑
k=1

wi,k|j(mk − mk−1) = mi

k = |S | − 1

i = |S | − 1 k = |S | − 1 j = |S |

wi,|S|−1||S|(m|S|−1 − m|S|−2) = m|S|−1 wi,|S|−1||S| = 1

wi,|S|−2||S|−2 + wi,|S|−2||S| = 1 −1

wi,k|k+1 + wi,k|k+2 + … + wi,k||S| = 1 i ≥ k

wi,k+1|k + wi,k+1|k+2 + … + wi,k+1||S| = 1 i ≥ k + 1



To what extent is  procedure unique? 
                    

                                                          

Take  

If  then two terms:  and . 

In our procedure    

Can now have  and . 

Three players get a share of . They are . When on the inside, Player  
gets  when competing against player , and  when against player .  

Bargaining Assumption  
            Share is larger (≥) when competing against weaker players:  if  

Bargaining assumption implies . More generally … 

α

∑
j∈S \ i

Min(i,j)

∑
k=1

wi,k|j(mk − mk−1) = mi

k = |S | − 2

i = |S | − 2 wi,|S|−2||S|(m|S|−2 − m|S|−3) wi,|S|−2||S|−1(m|S|−2 − m|S|−3)

wi,|S|−2||S| = wi,|S|−2||S|−1 = 1/( |S | − k) = 1/2.

wi,|S|−2||S| = λ wi,|S|−2||S|−1 = 1 − λ

m|S|−2 |S | − 2, |S − 1 | , |S | i = |S | − 2
λ |S | − 1 1 − λ |S |

wi,k|j1 ≥ wi,k|j2 j1 > j2

λ ≥ 1/2



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

 

 

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)

wk,k||S| + wk+1,k||S| + … + w|S|−1,k||S| = 1



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

 

Therefore  
  

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)

wk,k||S| + wk+1,k||S| + … + w|S|−1,k||S| = 1

wk,k||S| = wk+1,k||S| = … = w|S|−1,k||S| = 1/( |S | − k)



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

 

Therefore  
  
Therefore  for , , . 

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)

wk,k||S| + wk+1,k||S| + … + w|S|−1,k||S| = 1

wk,k||S| = wk+1,k||S| = … = w|S|−1,k||S| = 1/( |S | − k)

wi,k|j = 1/( |S | − k) k ≤ i < |S | k ≤ j ≤ |S | i ≠ j



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

 

Therefore  
  
Therefore  for , , . 

But   and therefore  

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)

wk,k||S| + wk+1,k||S| + … + w|S|−1,k||S| = 1

wk,k||S| = wk+1,k||S| = … = w|S|−1,k||S| = 1/( |S | − k)

wi,k|j = 1/( |S | − k) k ≤ i < |S | k ≤ j ≤ |S | i ≠ j

wk+1,k|k + wk+2,k|k + … + w|S|,k|k = 1 w|S|,k|k = 1/( |S | − k)



Uniqueness Proof 
Look at  for general . Only need consider . By our bargaining assumption 

 therefore  and  

 therefore  and  

… 

 therefore  and  

 therefore  and  

 

Therefore  
  
Therefore  for , , . 

But   and therefore  

This implies  . 
 

wi,k|j k i ≥ k

wk,k|k+1 ≤ wk,k|k+2 ≤ … ≤ wk,k||S| wk,k|k+1 ≤ 1/( |S | − k) wk,k||S| ≥ 1/( |S | − k)

wk+1,k|k ≤ wk+1,k|k+2 ≤ … ≤ wk+1,k||S| wk+1,k|k ≤ 1/( |S | − k) wk+1,k||S| ≥ 1/( |S | − k)

w|S|−1,k|k ≤ w|S|−1,k|k+1 ≤ … ≤ w|S|−1,k||S| w|S|−1,k|k ≤ 1/( |S | − k) w|S|−1,k||S| ≥ 1/( |S | − k)

w|S|,k|k ≤ w|S|,k|k+1 ≤ … ≤ w|S|,k||S|−1 w|S|,k|k ≤ 1/( |S | − k) w|S|,k||S|−1 ≥ 1/( |S | − k)

wk,k||S| + wk+1,k||S| + … + w|S|−1,k||S| = 1

wk,k||S| = wk+1,k||S| = … = w|S|−1,k||S| = 1/( |S | − k)

wi,k|j = 1/( |S | − k) k ≤ i < |S | k ≤ j ≤ |S | i ≠ j

wk+1,k|k + wk+2,k|k + … + w|S|,k|k = 1 w|S|,k|k = 1/( |S | − k)

w|S|,k|k = w|S|,k|k+1 = … = w|S|,k||S|−1 = 1/( |S | − k)



Uniqueness of  Procedureα

42

Bargaining Assumption:  
       
            Share is larger (not smaller) when competing against weaker players. 

If weights lead to Shapley value 

 

then  for  and  for  

That’s our procedure

∑
j∈S \ i

j

∑
k=1

wi,k|j(mk − mk−1) = mi

wj,k|i(S) = 1/( |S | − k) k ≤ j 0 k > j



Running  Procedure in Reverseα
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Procedure has people join one at a time in random order. 

Can also start with grand coalition and assume one person is at risk of being eliminated if they 
don’t reach an agreement. 

Shapley-like procedure says person  at risk just gets full marginal contribution while other 
players get their payoff in the procedure applied to . 

Need to apply backward induction to solve. 

This is foundation of non-cooperative game in Hart and Mas-Colell (1996). 

i
N \ i



Running  Procedure in Reverseα
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Procedure has people join one at a time in random order. 

Can also start with grand coalition and assume one person is at risk of being eliminated if they 
don’t reach an agreement 

Our procedure says person  at risk negotiates a split of  of marginal contribution plus 
gives other players their payoff in the procedure applied to  

Need to apply backward induction to solve. 

If everyone has equal chance of being at risk, expected payoffs are independent of  and result 
is Shapley. All (reverse) orderings are equally likely. Reverse  procedure yields same answer.

i (α,1 − α)
N \ i

α
α



Potential Generalization
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If no agreement, who should be eliminated?  

Chance of being eliminated could depend on marginal contribution.  

Payoffs then depend on .  

In airline case, A (who only uses runway of length 1) would be most likely to be eliminated.

α



Procedures and non-cooperative games
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Not a set of axioms 

Not a non-cooperative game 

In-between a cooperative game with axioms and a non-cooperative game rules 

Interesting in their own right 

Procedure motivates non-cooperative game 

Suggests different approach to weighted Shapley value, one where weights are 
endogenous



Non-Cooperative Game
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Literature Review
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Hart and Mas-Colell (1996) 

One person is chosen at random to make offer to others. If anyone rejects, person is excluded and gets 0 

If person at risk is person making the offer, can ask for full marginal contribution. Same as Shapley value, except 
process runs in reverse 

If chance of not being kicked out is , not 0, expected value of payoffs remains unchanged. But all payoffs converge 
to Shapley value as  

In generalization, person at risk of exclusion may be different from person making offer. Similar to  model, 
but  division is always equal or weighted by player identity. 

TU to NTU solution as in Maschler and Owen (1992) 

Gul (1989, 1999) 

People meet in groups. Person joining sells their right to negotiate to group leader. If equilibrium is efficient, then 
must equal Shapley value.

𝜌
ρ → 1

(α,1 − α)
(1 − α)



Non-Cooperative Game: Ground rules
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As before: Define marginal contributions : For , .    

Relabel players according to their marginal contribution:  

We adopt Hart and Mas-Colell rules for accepting offers. Everyone is asked in turn if they 
accept. Accept if indifferent. If any reject, person at risk is excluded with chance . 

We focus on case where no agreement leads to exclusion with probability 1. ( ) 

Who gets to make offers? Intuition for the game’s rules is similar to intuition for procedure.

S j ∈ S mj(S) = v(S) − v(S \ j) ≥ 0

m1(S) ≤ m2(S) ≤ . . . ≤ m|S|(S)

1 − ρ

ρ = 0



Non-Cooperative Game: Ground rules cont.
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Everyone knows who is at risk when making the proposal and accepting/rejecting it 

(Also fine if player making proposal only has probability distribution on who is at risk.) 

 is chance player  makes proposal and  is at risk 

 is chance player  makes proposal given  is at risk 

where  is the characteristic function restricted to subsets of . In particular,  can 
depend on marginal contributions 

For ease of notation, we write . 

τj,i(S, vS) j i

τj|i(S, vS) 𝑗 𝑖

vS S τj|i

τj|i(S)
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 is player ’s equilibrium expected payoff in stationary subgame perfect equilibrium 

 is player ’s chance of being the one excluded if no deal 

Theorem: In the unique stationary subgame-perfect equilibrium:

ϕk(S) k

βk(S) k

Note that  

Say  is at risk. If someone other than  makes the offer,  gets . If  makes the 
offer,  gets .  

Player making offer will ask for (and get) marginal contribution of player at risk of 
exclusion and give everyone (self included) payoff in game without that player 

ϕk(S \ k) = 0

i k k ϕk(S \ i) k
k ϕk(S \ i) + mk(S)

ϕk(S) = ∑
i∈S

βi(S)[ϕk(S \ i) + τk|i(S)mi(S)]

Hart and Mas-Colell Theorem (adapted for )ρ = 0
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Theorem: In the unique stationary subgame-perfect equilibrium: 

                          

Payoffs coincide with Shapley value if and only if  

                          

Corollary (Hart-Mas-Colell): Stationary subgame-perfect equilibrium coincides with Shapley value 
for all TU games if and only if: , ,  when , for all . 

The IF part is clear. That leads to Shapley recursion formula. 

ONLY IF: To obtain the Shapley value, only the marginal contribution of  can matter (Young, 
1985); therefore  when , and .

ϕk(S) = ∑
i∈S

βi(S)[ϕk(S \ i) + τk|i(S)mi(S)]

ϕk(S) =
1

|S |
[mk(S) + ∑

i∈S

ϕk(S \ i)]

βk(S) = 1/ |S | τk|k(S) = 1 τk|i(S) = 0 i ≠ k k ∈ S ⊆ N

k
τk|i(S) = 0 i ≠ k τk|k(S) = 1

Corollary
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“Corollary says that to obtain the Shapley value one needs, first, that only proposers (but 
not responders) may drop out; and second, that the probabilities [of] dropping out 
should be equalized across the players. The first condition is related to the null player 
axiom, and the second to the symmetry axiom.”  —Hart and Mas-Colell (1996) 

Corollary



New probabilities
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Player  is at risk of being eliminated if no agreement. 

Player ’s chance of making the proposal given  is at risk is  as defined below 

With chance , player  is chosen to make a proposal to the other players.  

With chance , the not-at-risk players are given priority in terms of making a 
proposal. A proposer is chosen according to the following procedure 

1. A number is selected at random from the interval . 
2. Any player  whose marginal contribution  is above the number selected 

is in the eligible pool; 
3. All players in the eligible pool are selected with equal probability; 
4. If no player is in the eligible pool, player  makes the proposal. 

Someone always makes the proposal. Thus  for all .

i

j i τj|i

α i

1 − α

[0, mi(S)]
j mj(S)

i

∑j
τj|i = 1 i



New probabilities
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Player ’s chance of making the proposal given  is at risk is  𝑗 i

τi|i = α for j = i < |S | ,

τj|i =
(1 − α)
mi(S)

Min(i,j)

∑
k=1

mk − mk−1

|S | − k
for j ≠ i

Game mimics procedure. Person  at risk has some power and thus gets , and other 
players split up the remaining  

With , the  are more general than Hart & Mas-Colell since they depend on the game

i αmi(S)
(1 − α)mi(S)

0 ≤ α < 1 τj|i

τi|i = α +
(1 − α)

m|S|
[m|S| − m|S|−1] for j = i = |S | ,



α = 1
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Leads to Shapley via Hart and Mas-Colell:  and  for . 

Player making proposal gets marginal contribution. 

We pick person to make offer conditional on knowing who will be excluded.  
Hart and Mas-Colell pick exclusion person conditional on knowing who will make offer.  
Different game trees. With , effectively the same. 

τi|i = 1 τj|i = 0 j ≠ i

α = 1

τj|i = α for j = i < |S | ,

τj|i =
(1 − α)
mi(S)

Min(i,j)

∑
k=1

mk − mk−1

|S | − k
for j ≠ i

τj|i = α +
(1 − α)

m|S|
[m|S| − m|S|−1] for j = i = |S | ,



General α
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Theorem: In any stationary subgame-perfect equilibrium:

 is not a function of . Hence same as . Hence . 
  
Shapley recursion formula. Hence .

ϕk(S) α α = 1 ϕk(S) = Shk(S)

ϕk(S) = Shk(S)

ϕk(S) = ∑
i∈S

βi(S)[ϕk(S \ i) + τk|i(S)mi(S)]

Corollary: If  and  is as defined, thenβk(S) = 1/ |S | τk|i

ϕk(S) =
1

|S |
[mk(S) + ∑

i∈S

ϕk(S \ i)]



Key Step
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Result depends on  

                    

Player ’s expected payoff from making offers depends only on its marginal 
contribution. 

ϕk(S) =
1

|S | ∑
i∈S

[ϕk(S \ i) + τk|i(S)mi(S)]

∑
i∈S

τk|i(S)mi(S) = mk(S)

k



Proof (for )j < |S |
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   which is completely symmetric between  and   

 

For ,    and   

  
 

τj|i(S)mi(S) = (1 − α)
Min(i,j)

∑
k=1

mk − mk−1

|S | − k
for j ≠ i i j

⟹ ∑
i∈S, i≠j

τj|i(S)mi(S) = ∑
i∈S, i≠j

τi|j(S)mj(S) = mj(S) ∑
i∈S, i≠j

τi|j(S)

j < |S | τj|j(S) = α ∑
i∈S, i≠j

τi|j(S) = 1 − α

∑
i∈S

τj|i(S)mi(S) = αmj(S) + (1 − α)mj(S) = mj(S)



Proof (for )j = |S |
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   which is completely symmetric between  and  

 

For ,    and   

  
 

τj|i(S)mi(S) = (1 − α)
Min(i,j)

∑
k=1

mk − mk−1

|S | − k
for j ≠ i i j

⟹ ∑
i∈S, i≠j

τj|i(S)mi(S) = ∑
i∈S, i≠j

τi|j(S)mj(S) = mj(S) ∑
i∈S, i≠j

τi|j(S)

j = |S | τj|j(S) = α + (1 − α)
m|S| − m|S|−1

m|S| ∑
i∈S, i≠j

τi|j(S) = (1 − α)
m|S|−1

m|S|

∑
i∈S

τj|i(S)mi(S) = αm|S| + (1 − α)(m|S| − m|S|−1) + (1 − α)m|S|−1 = m|S|(S)
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Theorem: In the unique stationary subgame-perfect equilibrium:

ϕk(S) = ∑
i∈S

βi(S)[ϕk(S \ i) + τk|i(S)mi(S)]

ONLY IF: To obtain the Shapley value, only the marginal contribution of  can matter; therefore 
 when  if  must be the same for all games. 

If  can depend on the game (vary w. marginal contributions) then 

ONLY IF:  

Person at risk need not be same person as one making proposal.

k
τk|i(S) = 0 i ≠ k τk|i(S)

τk|i(S)

∑
i∈S

τk|i(S)mi(S) = mk(S)

Corollary (Hart-Mas-Colell): Stationary subgame-perfect equilibrium coincides with 
Shapley value for all TU games if and only if: , ,  
when , for all .

βk(S) = 1/ |S | τk|k(S) = 1 τk|i(S) = 0
i ≠ k k ∈ S ⊆ N

Corollary



Payoffs in non-cooperative game same as procedure
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Player ’s chance of making the proposal given  is at risk is  𝑗 i

τj|i = α for j = i < |S | ,

τj|i =
(1 − α)
mi(S)

Min(i,j)

∑
k=1

mk − mk−1

|S | − k
for j ≠ i

Exactly the same as player ’s share of  when  joins  in procedure. Same uniqueness result.𝑗 mi(S) i S

τj|i = α +
(1 − α)

m|S|
[m|S| − m|S|−1] for j = i = |S | ,



Alternative game: Don’t know who will be excluded
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Will only discover if agreement fails.  

Look at case where everyone has equal chance of being excluded no matter who makes the offer: 
 and therefore   

Chance of making an offer can depend on marginal contribution: . Seems intuitive. 

Person making offer will ask for average value of marginal contribution:  

Expected gain to  is equal to marginal contribution:   

Result will be the Shapley value. 

τi|j = 1/ |S | βi(S) = ∑
j

σj(S)τi|j = 1/ |S |∑
j

σj(S) = 1/ |S |

σi =
mi

∑j∈s mj

∑
k∈S

τk|imk(S) =
1

|S | ∑
k

mk

i
mi

∑j mj
×

1
|S | ∑

j

mj =
mi

|S |



If chance of making offer and chance of 
exclusion are equal to  for all players 1/ |S |
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Then only  that leads to Shapley value has person making the offer being at risk of 
exclusion if rejected.  

Consider player 1, the player with lowest marginal contribution. 

Smallest payoff that can be assigned is when player 1 is the one at risk of exclusion when 
making the offer. Expected payoff is . Shapley payoff. 

Have now used up all  exclusion probability for player 1. 

Thus minimum possible payoff to player 2 is when all  exclusion probability for player 2 
is assigned to player 2. Expected payoff is . Shapley payoff.

τi|j

m1(S)/ |S |

1/ |S |

1/ |S |
m2(S)/ |S |



If chance of exclusion is equal to  for all players 1/ |S |
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Either player at risk of exclusion also makes the offer 

Or, if players other than excluded player can make the offer, can pick intuitive  that lead to 
Shapley. 

We have seen two examples that vary based on information structure. 

But chance of making offers will differ across players.

τj|i



Other offer rules from Hart and Mas-Colell
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Chance  is at risk given that  makes proposal is 

(i) ,  for .    

Think of  with  evenly divided across  and . This leads to all players, 
including dummy players, getting . 

(ii)  for all (i, j) 

Think of  with  evenly divided across  and . Not quite equal 
payoffs to all, but close as N gets large 

(iii) Gomes (1991)      and  (only proposer drops out) 

Result is weighted Shapley value. Note that weights  don’t vary with  

i j

τi|i = 0 τi|j = 1/( |S | − 1) i ≠ j

(α,1 − α) (1 − α) |S | − 1 α = 0
v(N)/ |N |

τi|j = 1/ |S |

(α,1 − α) (1 − α) |S | − 1 α = 1/ |S |

σi(S) =
wi

∑j∈s wj
τi|i = 1

wi S



A non-cooperative game with endogenous weights  
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Stick with  so that only proposer is at risk: Thus . 

Want weights  to be connected to marginal contributions. Lower marginal contribution should 
lead to higher chance of exclusion. 

If some , these players are the only ones at risk of exclusion (and probabilities are equal). 

If   for all ,  so that . 

Note weights are always equal in two-person games (since ’s are equal). Hence not weighted 
Shapley value. Outcomes now DO depend on . 

We focus on . At , weights are equal and we have Shapley value. As , player(s) 
with lowest marginal contribution in  will be excluded. 

τi|i = 1 βi(S) = σi(S)

wi

mi = 0

mi > 0 i wi = mi(S)λ βi(S) = σi(S) =
mλ

i

∑j∈S mλ
j

mi
α

λ ≤ 0 λ = 0 λ → − ∞
S



Endogenous weights example: Runway revisited
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Airline A needs runway of length 1. Marginal contribution is 1.  
(B needs length 2, C needs length 3.) 

: Under , airline A pays 1/3, gains 2/3 (Shapley value) 

Under , airline A pays 1/2 (nucleolus). Airline A is negotiating with {BC} pair. 

B and C split cost of second leg (in expectation), airline C always pays full cost of third leg. 

: Airline A pays 1/3 at , 1/4 at , and 0 as .  

Whether being excluded is good or bad for a player depends on whether  is above or 
below its Shapley value.

α = 0.5 λ = 0

λ → − ∞

α = 1 λ = 0 λ = − 1 λ → − ∞

αmi



Interim summary
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The players are all negotiating with each other. 

If they don’t reach a deal then in non-cooperative game, one would get picked to be at risk of 
exclusion and someone else will get to make offer. 

This determines what negotiation researchers call BATNAs or economists call subgame payoffs 

If ABC can’t reach a deal, what will happen?  

A two-way deal?  Are all three two-way deals equally likely? 

Non-cooperative game and procedure both determine the result of no-agreement.  

Two things: (1) how to split up gains when someone makes a proposal ( , and split of );  
(2) how to determine who is at risk.

α 1 − α



NTU games
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Define “  marginal contribution” of  to  as follows. Take ordering . 

Start with payoffs to each player 1, 2, … j. 

Player j+1 in the ordering gets  while the other players get  

Not really possible to define all the marginal orderings at the same time. Could define it as the average d_i 
over all orderings without that player.

α i S π

α



NTU games
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Maschler and Owen (1989, 1992) define “marginal contribution” of  to  as follows. Take ordering . 

Player 1 gets V(1). 

Player 2 gets max payoff possible subject to 1 getting V(1). 

And so forth 

This approach does not define all the marginal orderings at the same time. 

Can define player ’s average marginal contribution to a set  (by looking at all possible orderings), but not 
Player ’s marginal contribution.  

i S π

i S
i



NTU games
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We define “marginal contribution” of  to  as follows. Note that marginal contribution depends on solution 
concept and is defined by induction. 

Consider solution to . Give all players other than  those payoffs. Then find max payoff that can be given 
to  so that the profile is still feasible (is in ). 

Can define  in this manner for all players  in . Relabel the players in  so that  is increasing. 

Solution concept: In going from  to  we move in direction  until we hit the frontier, where for , 
 and for  

                                    . 

We can think of this as being motivated by the game where player  is the player at risk of being eliminated 
and the different components of the vector represent the probabilities of who gets to make the proposal 
multiplied by the associated gains. The case of  is the standard case.  

If feasible sets are all hyperplanes, then we can give each player their expected value and that will be 
feasible. That is the inductively defined solution to  when feasible set is a hyperplane.

i S

S \ i i
i V(S)

dj(S) j S S dj(S)

S \ i S z i < |S |
zi = α j ≠ i

zj =
1 − α
di(S)

Min(i,j)

∑
k=1

dk(S) − dk−1(S)
|S | − k

i

α = 1

S



NTU games

73

Look at all hyperplanes to attainable set. Find solution assuming hyperplane is feasible. Then find fixed point 
as in Nash. That is general solution to . 

Maschler and Owen (1989, 1992) show (given some regularity conditions) there is always a fixed point where 
hyperplane solution is feasible. May not be unique.  

In Hart and Mas-Colell move to frontier by giving everything to A. If A makes offer, gets to keep all surplus 
subject to giving {BC} their expected value under game without A (which is also a hyperplane game). 

We do something similar using  split rather than  split. 

Consistency is similar to Nash IIA argument. Can find other consistent solutions using our generalized Shapley 
value to hyperplane games. 

In the case of pure bargaining games,  leads to Nash bargaining solution. 

                                                               leads to Kalai-Smorodinsky solution.

S

(α,1 − α) (1,0)

α = 1

z =
1

|S |
1



Summary
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Move from  to  in negotiation procedure / game. 

More realistic (and more complicated) procedure still leads to Shapley value. Surprising. 

Helps parties understand and accept Shapley value (and also understand its implicit assumptions). 

In non-cooperative game, don’t need person making offer to also be person at risk of exclusion. More realistic 
(and more complicated) game still leads to Shapley value if chance of being excluded is equal. 

If risk of exclusion is not equal, outcome depends on . 

Suggests new endogenous approach to weighting in Shapley value.  

Suggests new way to move from TU to NTU solutions.

(1,0) (α,1 − α)

α


